Name: SPECIAL FOUNDATIONS PROCEDURES
Code: 213101023
Type: Elective
ECTS: 4.5
Length of subject: Per term
Semester and course: 2nd Year - First term
Speciality:
Language: English
Mode of study: On-site class
Lecturer data: GARCÍA ROS, GONZALO
Knowledge area: Ingeniería del Terreno
Department: Ingeniería Minera y Civil
Telephone: 968325743
Email: gonzalo.garcia@upct.es
Office hours and location:
lunes - 11:00 / 14:00
EDIFICIO DE LA ETSINO Y LA EICM, planta 0, Despacho 0.28
Para atención fuera del horario de tutorías, escribir a: gonzalo.garcia@upct.es
miércoles - 09:00 / 12:00
EDIFICIO DE LA ETSINO Y LA EICM, planta 0, Despacho 0.28
Para atención fuera del horario de tutorías, escribir a: gonzalo.garcia@upct.es
Tutorials will by carried out by request of the student sending a mail to gonzalo.garcia@upct.es
Qualifications/Degrees:
PhD in Phd. in Ground Engineering (Soil Consolidation) from Technical University of Cartagena (SPAIN) - 2016
Engineer in Civil Engineer from Polytechnic university of Valencia (SPAIN) - 2009
Academic rank in UPCT: Profesor Permanente Laboral
Number of five-year periods: 1
Number of six-year periods: 1 de investigación
Curriculum Vitae: Full Profile
Lecturer data: JIMÉNEZ VALERA, JOSÉ ANTONIO
Knowledge area: Ingeniería del Terreno
Department: Ingeniería Minera y Civil
Telephone: 968325689
Email: jose.jvalera@upct.es
Office hours and location:
Qualifications/Degrees:
Academic rank in UPCT: Docente por Sustitución
Number of five-year periods: Not applicable due to the type of teaching figure
Number of six-year periods: No procede por el tipo de figura docente
Curriculum Vitae: Full Profile
CE03. Conocimiento de técnicas especiales de cimentación y de métodos de mejora del terreno. Capacidad para analizar la interacción obra-terreno y para resolver los problemas usuales de la Ingeniería Geotécnica. Capacidad para elegir los procedimientos de construcción más adecuados en situaciones reales de cimentación de obras de ingeniería civil y edificación.
Al termino de esta enseñanza el alumnado debe ser capaz de:
DRA1 Aplicar los conocimientos de la mecánica de suelos y de rocas en el estudio, proyecto y construcción de cimentaciones especiales (en obras lineales, puentes, puertos, presas de tierra, edificaciones, etc.).
DRA2 Emplear los conocimientos de la mecánica de suelos y de rocas en procedimientos geotécnicos específicos (técnicas de mejora del terreno, estructuras de contención de excavaciones, presas de materiales sueltos, anclajes, pilotes y micropilotes).
DRA3 Analizar el comportamiento dinámico del suelo de cara al diseño sismorresistente.
DRA4 Utilizar los recursos de información disponibles tales como bases de datos, sistemas de información geográfica, etc., filtrando y evaluando la calidad de las fuentes.
Cimentaciones en suelos difíciles. Rellenos sanitarios (vertederos). Técnicas de mejora de la capacidad portante del terreno. Construcción y control de estructuras de contención de excavaciones. Construcción y control de presas de materiales sueltos. Cimentación de puentes y obras portuarias. Anclajes. Pilotes y micropilotes. Efectos dinámicos y sísmicos.
1. Cimentaciones en suelos difíciles
1.1: Terrenos colapsables
1.2: Terrenos expansivos
1.3: Rellenos sanitarios (vertederos)
1.4: Mejora de la capacidad portante del terreno
1.5: Mejora del terreno mediante el empleo de mechas drenantes
2. Construcción de muros pantalla
2.1: Metodología constructiva y control técnico. Ámbito de aplicación
2.2: Estudio de casos prácticos
3. Construcción de presas de materiales sueltos
3.1: Características básicas del cuerpo de presa
3.2: Control geotécnico en ejecución
3.3: Control de estabilidad del cuerpo de presa
4. Otros medios de sostenimiento y control de deformaciones
4.1: Micropilotes
4.2: Anclajes
4.3: Pilotes prefabricados
5. Problemas geotécnicos dinámicos
5.1: Comportamiento dinámico del suelo
5.2: Vibración de cimentaciones en terrenos elásticos
Laboratory practice 01: "Simple Compression Test"
Simple Compression Test to determine Young Modulus and Poisson's ratio. Individual practice; 2 hours. The student is required to submit a report
Laboratory practice 02: "Complete oedometric test"
Complete oedometric test. Obtaining edometric curve and consolidation curves. Individual practice; 2 hours. The student is required to submit a report
Computer practice 01: "Soil consolidation improvement by using Vertical Drains"
Soil consolidation improvement by using Prefabricated Vertical Drains. Resolution with PLAXIS 2D. Individual practice; 2 hours. The student is required to submit a report
Laboratory practice 03: "Direct shear test on cohesive soils"
Direct shear test on cohesive soils. Obtaining residual and peak resistance parameters. Individual practice; 2 hours. The student is required to submit a report
Computer practice 02: "Pile foundation under bridge deck support"
Pile foundation under bridge deck support. Resolution with PLAXIS 2D. Individual practice; 2 hours. The student is required to submit a report
Computer practice 03: "Dry excavation using a tie back wall"
Dry excavation supported by concrete diaphragm walls tied with pre-stressed ground anchors. Resolution with PLAXIS 2D. Individual practice; 2 hours. The student is required to submit a report
Promoting the continuous improvement of working and study conditions of the entire university community is one the basic principles and goals of the Universidad Politécnica de Cartagena. Such commitment to prevention and the responsibilities arising from it concern all realms of the university: governing bodies, management team, teaching and research staff, administrative and service staff and students. The UPCT Service of Occupational Hazards (Servicio de Prevención de Riesgos Laborales de la UPCT) has published a "Risk Prevention Manual for new students" (Manual de acogida al estudiante en materia de prevención de riesgos), which may be downloaded from the e-learning platform ("Aula Virtual"), with instructions and recommendations on how to act properly, from the point of view of prevention (safety, ergonomics, etc.), when developing any type of activity at the University. You will also find recommendations on how to proceed in an emergency or if an incident occurs. Particularly when carrying out training practices in laboratories, workshops or field work, you must follow all your teacher's instructions, because he/she is the person responsible for your safety and health during practice performance. Feel free to ask any questions you may have and do not put your safety or that of your classmates at risk.
Relación con otras asignaturas del plan de estudios: la asignatura forma parte del itinerario optativo de "Construcción". Es recomendable poseer los conocimientos de geotecnia adquiridos en la asignatura de Geotecnia y Cimientos, impartida durante el primer curso del Máster en Ingeniería de Caminos, Canales y Puertos.
Conocimientos previos recomendados: es muy recomendable poseer conocimientos de matemáticas, física, mecánica, resistencia de materiales y geotecnia a nivel de Máster en Ingeniería de Caminos, Canales y Puertos.
Cada estudiante tiene que elegir y cursar un itinerario optativo de 16.5 ECTS, agrupados en 3 bloques de 4 asignaturas por temáticas:
-Bloque de Construcción (16.5 ECTS). Puentes (4.5 ECTS), Tipología estructural y constructiva (4.5 ECTS), Procedimientos especiales de cimentación (4.5 ECTS), Aplicaciones del método de elementos finitos en ingeniería estructural (3 ECTS).
-Bloque de Transportes, Urbanismo y Ordenación del Territorio (16.5 ECTS). Infraestructuras y servicios urbanos (4.5 ECTS), Intersección y enlaces en redes viarias (4.5 ECTS), Planificación y gestión territorial (3 ECTS), Ingeniería paisajística, territorial y de la planificación ambiental (4.5 ECTS).
-Bloque de Hidráulica, Medio Ambiente y Energía (16.5 ECTS). Energía hidroeléctrica, eólica y mareomotriz (4.5 ECTS), Modelos numéricos de zonas inundables (3 ECTS), Modelización y simulación de estructuras hidráulicas (4.5 ECTS), Ingeniería fluvial (4.5 ECTS).
Class in conventional classroom: theory, problems, case studies, seminars, etc.
Explanation of the theoretical fundamentals necessary for mastering the different foundation techniques and soil treatments through the support of slide shows.
Explanation of techniques and methods of this discipline.
Resolution of the doubts raised by the students.
4 hours will be devoted to computer practices
5 hours will be devoted to lab practices
25
100
Class in laboratory: practical classes / internships
The students will perform:
- Simple compression test
- Oedometer test (consolidation)
- Direct shear test.
3
100
Class in the field or open classroom (technical visits, lectures, etc.)
Field practice that includes:
1) visit to a prefabricated pile factory.
2) visit to a slope stabilization using anchors.
These activities are intended to make students aware of the Sustainable Development Goals, such as building resilient infrastructures, promoting sustainable industrialization, and fostering innovation.
5
100
Class in a computer classroom: practical classes / internships
Solving real problems through the support of specific computer tools for Soil Mechanics (PLAXIS 2D).
- Soil consolidation improvement by using Vertical Drains.
- Pile foundation under bridge deck support.
- Dry excavation using a tie back wall.
Completion of practice reports.
10
100
Assessment activities (continuous assessment system)
Multiple choice partial exam 01 (30 questions.)
Individual Work 01 presentation.
Multiple choice partial exam 02 (30 questions).
Team Work 02 presentation.
2
100
Assessment activities (final assessment system)
Multiple choice partial exam 01 (30 questions.)
Individual Work 01 presentation.
Multiple choice partial exam 02 (30 questions).
Team Work 02 presentation.
4
100
Tutorials
Resolution of doubts about the concepts already taught in class and/or practices
4
50
Student work: study or individual or group work
Study of the student.
Work of the student (1 individual work + 1 team work): carrying out a problem, work or project, assigned to the student(s), with which it is intended to work the capacity for analysis and the choice of the most appropriate methodologies for the successful resolution of the same. The student(s) will put into practice the knowledge acquired on available materials, equipment and technologies and must make a correct interpretation of the results obtained.
The student(s) will have to handle information in several languages
82
0
Exam/s (theory and/or practice).
Exam(s) (theory and/or practice). There will be 2 partial exams (30 questions each exam) throughout the course.
At the end of the semester, the student can choose between keeping the average mark obtained in the partial exams or taking a final exam with all the content of the subject (60 questions).
The student's theoretical knowledge acquired during the course will be valued, as well as its ability to apply it to real practical situations.
With the 1st partial exam activity, the following learning outcomes are evaluated: DRA1, DRA2, DRA3 and DRA4.
With the 2nd partial exam activity, the following learning outcomes are evaluated: DRA1, DRA2, DRA3 and DRA4.
40 %
Individual assignments and/or presentations.
Evaluation of individual work 01 (problem, work or project).
The ability to solve practical cases individually, using the tools seen in class, will be valued.
With this activity, the following learning outcomes are evaluated: DRA1 and DRA4.
25 %
Team assignments and/or presentations
Evaluation of team work 02 (problem, work or project).
The ability to solve practical cases as a team, using the tools seen in class, will be valued.
With this activity, the following learning outcomes are evaluated: DRA1, DRA2, DRA3 and DRA4.
25 %
Other evaluation activities
Summative evaluation (scoring and mid-term). Periodic monitoring of student learning.
The evolution of the student throughout the course will be valued, both at a theoretical-conceptual level and at a practical level.
With this activity, the following learning outcomes are evaluated: DRA1, DRA2, DRA3 and DRA4.
10 %
Exam/s (theory and/or practice).
Exam(s) (theory and/or practice). There will be 2 partial exams (30 questions echa exam) throughout the course.
At the end of the semester, the student can choose between keeping the average mark obtained in the partial exams or taking a final exam with all the content of the subject (60 questions).
The student's theoretical knowledge acquired during the course will be valued, as well as its ability to apply it to real practical situations.
With this activity, the following learning outcomes are evaluated: DRA1, DRA2, DRA3 and DRA4.
40 %
Individual assignments and/or presentations.
Evaluation of individual work 01 (problem, work or project).
The ability to solve practical cases individually, using the tools seen in class, will be valued.
With this activity, the following learning outcomes are evaluated: DRA1 and DRA4.
25 %
Team assignments and/or presentations
Evaluation of team work 02 (problem, work or project).
The ability to solve practical cases as a team, using the tools seen in class, will be valued.
With this activity, the following learning outcomes are evaluated: DRA1, DRA2, DRA3 and DRA4.
25 %
Other evaluation activities
Summative evaluation (scoring and mid-term). Periodic monitoring of student learning.
The evolution of the student throughout the course will be valued, both at a theoretical-conceptual level and at a practical level.
With this activity, the following learning outcomes are evaluated: DRA1, DRA2, DRA3 and DRA4.
10 %
Author: Wu, Tien Hsing
Title: Soil dynamics
Editorial: Allyn & Bacon
Publication Date: 1971
ISBN:
Author: Das, Braja M.
Title: Principles of soil dynamics
Editorial: Cengage Learning
Publication Date: 2011
ISBN: 0495411353
Author: Richart, F. E.
Title: Vibrations of soils and foundations
Editorial: Prentice-Hall Inc.
Publication Date: 1970
ISBN:
Author: Atkinson, John
Title: The mechanics of soils and foundations
Editorial: Taylor & Francis,
Publication Date: 2007
ISBN: 0415362563
Author: González de Vallejo, Luis I.
Title: Ingeniería geológica
Editorial: Prentice Hall
Publication Date: 2006
ISBN: 8420531049
Author: Jiménez Salas, J.A.
Title: Cimentaciones, excavaciones y aplicaciones de la geotecnia
Editorial: Rueda
Publication Date: 1980
ISBN: 8472070174
Author: Kramer, Steven Lawrence
Title: Geotechnical earthquake engineering
Editorial: Pearson Education,
Publication Date: 2014
ISBN: 1292042672
Author: Day, Robert W.
Title: Geotechnical earthquake engineering handbook
Editorial: McGraw-Hill,
Publication Date: 2002
ISBN: 9780071500760
Author: Clough, Ray W.
Title: Dynamics of structures
Editorial: McGraw-Hill
Publication Date: 1975
ISBN: 0070113920