Español English
Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas
HUB
HUB
Quality
News [ES]
Agenda [ES]
International
The School
Studies
Mobility
Employment
Research
Procedures
Universidad Politécnica de Cartagena Universidad Politécnica de Cartagena Universidad Politécnica de Cartagena European University of Technology European University of Technology European University of Technology
HUB
Quality
News [ES]
Agenda [ES]
International
The School
Studies
Mobility
Employment
Research
Procedures

Inicio / Estudios / Máster Universitario en Ciencia y Tecnología del Agua y del Terreno / Plan de Estudios

Course Unit Description

DRINKING-WATER PURIFICATION

Course 2021-22

  • On-site

1.Subject data

Name: DRINKING-WATER PURIFICATION

Code: 228101015

Type: Elective

ECTS: 4

Length of subject: Per term

Semester and course: First term

Speciality:

Language: English

Mode of study: On-site class

2. Lecturer data

Lecturer data: GARCÍA BERMEJO, JUAN TOMÁS

Knowledge area: Ingeniería Hidráulica

Department: Ingeniería Minera y Civil

Telephone: 968327026

Email: juan.gbermejo@upct.es

Office hours and location:

lunes - 12:00 / 14:00
EDIFICIO DE LA ETSINO Y LA EICM, planta 1, Despacho Anexo de Minas
Se ruega contactar con el profesor con anterioridad.
miércoles - 16:00 / 18:00
EDIFICIO DE LA ETSINO Y LA EICM, planta 1, Despacho Anexo de Minas
Se ruega contactar con el profesor con anterioridad.

Qualifications/Degrees:
PhD in PhD. in Civil Engineering in Technical Univeristy of CArtagena from Universidad Politécnica de Cartagena (SPAIN) - 2016

Academic rank in UPCT: Profesor Contratado Doctor

Number of five-year periods: 2

Number of six-year periods: 0

Curriculum Vitae: Full Profile

Lecturer data: PÉREZ DE LA CRUZ, FRANCISCO JAVIER

Knowledge area: Ingeniería Hidráulica

Department: Ingeniería Minera y Civil

Telephone: 868071235

Email: javier.cruz@upct.es

Office hours and location:

lunes - 10:00 / 13:00
EDIFICIO DE LA ETSINO Y LA EICM, planta 1, Despacho A.1.05
jueves - 16:00 / 19:00
EDIFICIO DE LA ETSINO Y LA EICM, planta 1, Despacho A.1.05
También se podrán solicitar tutorías mediante correo electrónico (javier.cruz@upct.es) o a través de la plataforma Teams

Qualifications/Degrees:
Engineer in Civil Engineer from Technical University of Madrid (SPAIN) - 2003

Academic rank in UPCT: Docente por Sustitución

Number of five-year periods: Not applicable due to the type of teaching figure

Number of six-year periods: No procede por el tipo de figura docente

Curriculum Vitae: Full Profile

Lecturer data: PÉREZ DE LA CRUZ, FRANCISCO JAVIER

Knowledge area: Ingeniería Hidráulica

Department: Ingeniería Minera y Civil

Telephone: 868071235

Email: javier.cruz@upct.es

Office hours and location:

lunes - 10:00 / 13:00
EDIFICIO DE LA ETSINO Y LA EICM, planta 1, Despacho A.1.05
jueves - 16:00 / 19:00
EDIFICIO DE LA ETSINO Y LA EICM, planta 1, Despacho A.1.05
También se podrán solicitar tutorías mediante correo electrónico (javier.cruz@upct.es) o a través de la plataforma Teams

Qualifications/Degrees:
Engineer in Civil Engineer from Technical University of Madrid (SPAIN) - 2003

Academic rank in UPCT: Docente por Sustitución

Number of five-year periods: Not applicable due to the type of teaching figure

Number of six-year periods: No procede por el tipo de figura docente

Curriculum Vitae: Full Profile

3. Competences and learning outcomes

3.1. Basic curricular competences related to the subject

[CB10 ]. Students are required to have the learning skills that allow them to continue studying in a way that will be largely self-directed or autonomous.

[CB6 ]. To possess and understand knowledge that provides a basis or opportunity to be original in the development and / or application of ideas, often in a research context.

[CB7 ]. Students are required to be able to apply the knowledge acquired and their ability to solve problems to new or unfamiliar environments within broader (or multidisciplinary) contexts related to their area of study.

[CB8 ]. Students are required to be able to integrate knowledge and face the complexity of formulating judgments based on information that, being incomplete or limited, includes reflections on social and ethical responsibilities linked to the application of their knowledge and judgments.

[CB9 ]. Students are required to be able to communicate their conclusions as well as the knowledge and last reasons that sustain them to specialized and non-specialized audiences in a clear and unambiguous way.

3.2. General curricular competences related to the subject

[G01 ]. To learn to apply to new or unfamiliar environments, within broader (or multidisciplinary) contexts, the concepts, principles, theories or models related to their area of study.

[G02 ]. To properly and with a certain originality write literary compositions or motivated arguments, plans, work projects or scientific articles or to formulate reasonable hypothese.

[G03 ]. To issue judgments based on criteria, external regulations or personal reflections.

[G04 ]. To publicly present ideas, procedures or research reports, convey emotions or advise people and organizations.

3.3. Specific curricular competences related to the subject

[ES1 ]. Conceptualization of the concepts inherent to the evaluation of natural and urban water resources.

[ES2 ]. Understanding of the temporal and spatial aspects of the water problems raised and their impact at various scales.

[ES3 ]. Ability to understand hydrological processes.

[ES6 ]. Understanding of the concepts of filtrations and subsoil flow networks.

Specific topic competences (for elective topics which have them)

Esta Materia "Tecnología en Agua y Recursos Hídricos" desarrolla las siguientes compentencias de especialidad (E): E01. Conocer los distintos sistemas tecnológicos aplicados al agua y los recursos hídricos. E04. Conocer las interacciones entre el ciclo hídrico y los ecosistemas. E05. Adquirir sensibilidad para la gestión sostenible de los ecosistemas como consecuencia de un mayor conocimiento del funcionamiento de los mismos. E06. Conocer, establecer y definir los problemas relacionados con los ecosistemas acuáticos, el impacto de su gestión y las actuaciones de prevención y remediación. E07. Adquirir y comprender los conceptos y técnicas avanzados en ecología. E10. Seleccionar los equipos necesarios y su interacción en los procesos de potabilización de aguas. E11. Determinar las técnicas y unidades de proceso más oportunos minimizando costes y a un menor impacto medio ambiental en desalación de aguas.

3.4. Transversal curricular competences related to the subject

[T01 ]. Capacity for analysis and synthesis

[T05 ]. Problem solving capacity

[T13 ]. Autonomous learning

[T18 ]. Professional initiative and entrepreneurship

[T19 ]. Motivation for quality

3.5. Subject learning outcomes

1. Conocer y aplicar los conceptos básicos y la terminología propia de las plantas de tratamiento de aguas, adquiriendo nuevo vocabulario técnico.
2. Conocer, interpretar y comparar los distintos tratamientos existentes en las plantas de Tratamientos de Aguas (procesos físicos, químicos y de desinfección), cuyo fin es la elección de la solución más conveniente de acuerdo a datos y condiciones de contorno objetivos.
3. Evaluar y comprobar los parámetros básicos del agua a potabilizar en cuanto a volumen y carga contaminante, con el fin de disponer de orden de magnitud para estructurar una instalación.
4. Calcular e implementar a escala de predimensionamiento cada una de las partes y procesos de las Estaciones Depuradoras de Aguas Residuales, desde una perspectiva multidisciplinar, tanto operacional, mecánica como económicamente.
5. Aplicar los conocimientos mediante la redacción de un Anteproyecto de una Estación Potabilizadora, elaborando una exposición pública, oral y coherente de defensa de la solución adoptada, demostrando la asimilación de los contenidos de la asignatura e integrando las dimensiones económicas, sociales y ambientales en el trabajo propuesto.
6. Diseñar una presentación de los resultados mediante técnicas de innovación docente que permitan una exposición clara, con capacidad de síntesis y eficaz de la solución elegida por cada grupo de alumnos, realizándola de forma oral acompañada de un documento escrito que lo justifique, con fluidez y corrección lingüística, amenidad expositiva y persuasión comunicativa, incluyendo el lenguaje no verbal.
7. Poner en valor los conocimientos adquiridos para la toma de decisiones relacionada con el diseño del proceso de depuración más adecuado, de acuerdo a criterios de ética profesional, datos objetivos (población, caudales, cargas contaminantes), explotación futura de la infraestructura y sostenibilidad ambiental.
8. Proporcionar feed-back a los alumnos acerca de la solución propuesta, así como el modo y tipo de exposición, con espíritu crítico, para cerrar adecuadamente el modelo de evaluación por competencias y que les permita desarrollar habilidades directivas que les capaciten profesionalmente y puedan competir en el mercado con garantías.
9. Ser capaz de desarrollar e implantar la responsabilidad social corporativa, como instrumento desde donde emprender actividades organizativas que favorezcan el desarrollo humano sostenible a partir de las infraestructuras diseñadas, identificando prácticas de gestión socialmente responsable relacionadas con el trabajo propuesto.
10. Formular juicios teniendo en cuenta la responsabilidad ética y social relacionada con el ejercicio profesional o con la actividad investigadora.

1. Know and apply the basic concepts and terminology specific to water treatment plants, acquiring new technical vocabulary.
2. Know, interpret and compare the different treatments existing in water treatment plants (physical, chemical and disinfection processes), with the aim of choosing the most suitable solution according to objective data and boundary conditions.
3. Evaluate and check the basic parameters of the water to be made drinkable in terms of volume and pollutant load, in order to have an order of magnitude for structuring an installation.
4. Calculate and implement on a pre-dimensioning scale each of the parts and processes of the Waste Water Treatment Plants, from a multidisciplinary perspective, both operationally, mechanically and economically.
5. Apply the knowledge through the drafting of a Preliminary Project of a Water Treatment Plant, elaborating a public, oral and coherent defence of the adopted solution, demonstrating the assimilation of the contents of the subject and integrating the economic, social and environmental dimensions in the proposed work.
6. Design a presentation of the results by means of innovative teaching techniques that allow for a clear, synthesised and effective presentation of the solution chosen by each group of students, making it orally accompanied by a written document that justifies it, with linguistic fluency and correctness, expository amenity and communicative persuasion, including non-verbal language.
7. Put into value the knowledge acquired in order to make decisions related to the design of the most appropriate purification process, in accordance with criteria of professional ethics, objective data (population, flow rates, pollutant loads), future exploitation of the infrastructure and environmental sustainability.
8. To provide feedback to students on the proposed solution, as well as the mode and type of presentation, with a critical spirit, in order to adequately close the competency-based assessment model and to enable them to develop management skills that will enable them to compete in the market with guarantees.
9. Be able to develop and implement corporate social responsibility, as an instrument from which to undertake organisational activities that favour sustainable human development based on the infrastructures designed, identifying socially responsible management practices related to the proposed work.
10. Formulate judgements taking into account ethical and social responsibility related to professional practice or research activity.

4. Contents

4.1 Curricular contents related to the subject

Tratamiento y valorización de aguas residuales agropecuarias Definición de aguas residuales. Tipos y origen de las aguas residuales. Características físicas, químicas y biológicas de las aguas residuales agropecuarias. Tipos de tratamientos: preliminares, primarios, secundarios y terciarios. Humedales artificiales para el tratamiento de aguas residuales agropecuarias: componentes, tipos, manejo, seguimiento y control. Modelo general de diseño de un humedal artificial de flujo libre: aspectos técnicos y constructivos. Aspectos más recientes sobre el uso de las aguas residuales agropecuarias en agricultura. Depuración de aguas Introducción: Efectos de los vertidos; Capacidad de autodepuración de una corriente; Clasificación de los contaminantes; Control analítico de la contaminación; Legislación. Conceptos básicos de depuración de las aguas residuales. Procesos de depuración avanzados. Procesos de depuración biológicos. Evacuación, deshidratación y espesamiento. Potabilización de aguas Introducción. Composición natural de las aguas; Contaminación y tipos; Legislación. Procesos avanzados en relación a las aguas de abastecimiento. Captación, conducción y bombeo de aguas para abastecimiento. Almacenamiento y medición de las aguas. Operaciones unitarias en la potabilización de aguas para abastecimiento: Desarenado; Precloración; Coagulación y floculación; Instalaciones modernas; Decantación; Filtración; Desinfección. Desalación de aguas Técnicas de filtración del agua. Corrección química y acondicionamiento del agua. Tecnologías existentes para desalación de aguas: Intercambio iónico; condensación y evaporación; electrodiálisis; ósmosis Inversa. Análisis de viabilidad técnica y económica de proyectos de desalación. Ejemplos prácticos de diseño. Aspectos legislativos relacionados con la desalación, el abastecimiento de aguas desaladas y el medioambiente. Simulación de flujo y transporte de aguas subterráneas. Aplicaciones en ingeniería y medio ambiente Acuíferos libres y confinados. Relación piezometría-flujo. Ecuaciones de flujo y transporte en medios porosos. Parámetros hidrogeológicos. Intrusión en acuíferos costeros. Caracterización de escenarios. Captaciones y balances. Relaciones agua superficial-agua subterránea. Introducción a la modelización numérica de flujo y transporte en medios porosos. El programa FATSIM-A: funcionamiento y ejercicios prácticos. Simulación de escenarios patrón: Problemas de Henry, Elder, Lago salado y Salt-Dome. El programa MODFLOW. Funcionamiento de la interfase PMWIN. Ejercicios prácticos: acuíferos multicapa, contaminación, perímetros de afección, drenajes, recarga, subsidencia y pantallas impermeables. Ingeniería y Ecología de ecosistemas acuáticos Introducción. Conceptos y técnicas avanzadas en ecología. Complejidad y ecosistemas. Dinámica de poblaciones en el tiempo y espacio. Conservación y uso sostenible de la diversidad en ecosistemas dependientes del agua. Termodinámica de ecosistemas acuáticos. Casos prácticos.

4.2. Theory syllabus

Teaching modules

Units

Unidad Didáctica I. Introducción a los procesos de potabilización de aguas

Tema I. Introducción a la potabilización de aguas. Ejemplos de ETAPs
Tema II. Procesos físico químicos de potabilización de aguas

Unidad Didáctica II. Coagulación y Floculación

Tema III. Coagulación
Tema IV. Floculación

Unidad didáctica III. Sedimentación

Tema V. Procesos de Sedimentación

Unidad didáctica IV. Procesos de filtración

Tema VI. Procesos de filtración

Unidad didáctica V. Procesos de desinfección

Tema VII. Procesos de desinfección en ETAPs
Tema VIII. Implicaciones de la carga microbiológica en aguas de consumo humano. R.D. 140

4.3. Practice syllabus

Name

Description

Visit to DWTP

Visit to a drinking water treatment plant

Classroom practice coagulation and flocculation system design

Design and sizing of a coagulation-flocculation system using a spreadsheet

Design of sedimentation system in DWTP

Design and sizing of physical sedimentation systems using a spreadsheet.

Dimensioning of a filtration system in DWTP.

Dimensioning of a filtration system in DWTP in spreadsheet

Design of DWTP disinfection systems

Design of disinfection systems in DWTP with spreadsheet

Risks prevention

Promoting the continuous improvement of working and study conditions of the entire university community is one the basic principles and goals of the Universidad Politécnica de Cartagena. Such commitment to prevention and the responsibilities arising from it concern all realms of the university: governing bodies, management team, teaching and research staff, administrative and service staff and students. The UPCT Service of Occupational Hazards (Servicio de Prevención de Riesgos Laborales de la UPCT) has published a "Risk Prevention Manual for new students" (Manual de acogida al estudiante en materia de prevención de riesgos), which may be downloaded from the e-learning platform ("Aula Virtual"), with instructions and recommendations on how to act properly, from the point of view of prevention (safety, ergonomics, etc.), when developing any type of activity at the University. You will also find recommendations on how to proceed in an emergency or if an incident occurs. Particularly when carrying out training practices in laboratories, workshops or field work, you must follow all your teacher's instructions, because he/she is the person responsible for your safety and health during practice performance. Feel free to ask any questions you may have and do not put your safety or that of your classmates at risk.

4.4. Comments

5. Teaching method

Name

Description

Hours

In-class

Name

Attendance to seminars and conferences

Description

Master Class seminars will be held to present specific situations by recognised professionals from outside the UPCT, in order to relate the subject to professional activity. Individual or group learning will be monitored. Work presentations and motivation for learning are included.

Hours

6

In-class

100

Name

Theory classes (lesson method)

Description

Expository class using the method of the lesson. Resolution of doubts raised by students.

Hours

14

In-class

100

Name

Personal study of exercises and case studies

Description

Non-attendance: Preparation of the internship report.

Hours

16

In-class

0

Name

Personal theory study

Description

Non-presential: Personal study.

Hours

27

In-class

0

Name

Evaluation

Description

Attendance at the official examination of the subject.

Hours

2

In-class

100

Name

Presentation of assignments

Description

Presencial convencional: Asistencia y realización de las prácticas.

Hours

6

In-class

100

Name

Laboratory / computer room

Description

IT classroom practice

Hours

3

In-class

0

Name

Blackboard practice (exercises and / or practical cases)

Description

Based on the theory topics, the teacher will raise relevant cases in some of the practices for the student to solve them individually, thus strengthening the theoretical content exposed.

Hours

6

In-class

100

Name

Writing reports

Description

Non-attendance: Preparation of the report of practices.

Hours

16

In-class

0

Name

Individual or group work

Description

Explanation of the academic work to be done by the students. Supervision and evaluation of the work.

Hours

16

In-class

0

Name

Tutorials

Description

Resolution of doubts about theory and exercises

Hours

5

In-class

70

Name

Technical visits

Description

Visit to works or facilities whose activity is related to the contents of the course.

Hours

3

In-class

100

6. Assessment method

6.1. Continous assesment system

Name

Description and criteria

Percentage

Name

Exercises and / or practical cases

Description and criteria

Problems and exercises proposed in class or in the Virtual Classroom by the teacher to be solved in class or at home and delivered by students. Knowledge of the different concepts and calculation methods seen in class will be assessed. The learning outcomes 1 to 4 are included. The exercises will be partly solved in class individually and will be handed in as part of a report that the student will have to send and present.

Percentage

65 %

Name

Reports on practical sessions and / or visits

Description and criteria

Resolution at home and delivery of report of various parts of a DWTP, individually. Reports resulting from theory and practical cases seen in clsae, seminars and visits to treatment plants presented as individual assignments. The assingments will be partly solved in class individually and will be handed in as part of a report that the student will have to present. Learning outcomes 5 to 10.

Percentage

5 %

Name

Theoretical questions

Description and criteria

Short developmental exercise type questions. Demonstrate theoretical knowledge through evaluation. Learning outcomes 1 to 5, 6 and 7. Theoretical questions through a multiple-choice class questionnaire will be used to assess the student that will come from a spreadsheet developed by students. The theoretical questions will be solved in class by students individually.

Percentage

15 %

Name

Individual or group assignments

Description and criteria

Home resolution and sizing delivery of various parts of a DWTP. Written report of some practical cases seen in class. Apply the knowledge through the drafting of a Preliminary Project of a Drinking Water Treatment Plant, elaborating a public, oral and coherent defence of the adopted solution, demonstrating the assimilation of the contents of the subject and integrating the economic, social and environmental dimensions in the proposed work. Learning outcome 1 to 5. This will be worked in group and presented individually.

Percentage

15 %

6.2. Final assesment system

Name

Description and criteria

Percentage

Name

Written document

Description and criteria

Written report of case studies seen in class. Learning outcomes 1 to 5, 7. Send report done individually.

Percentage

10 %

Name

Exercises and / or practical cases

Description and criteria

Problems and exercises proposed in class or in the Virtual Classroom by the teacher to be solved in class or at home and delivered by students. The evaluation criteria and the learning outcomes will be the same as those included in the continuous evaluation.

Percentage

55 %

Name

Report of the assignment director/ project director

Description and criteria

Resolution at home and delivery of report of various parts of a DWTP, individually. Reports resulting from theory and practical cases seen in class, seminars and visits to treatment plants presented as individual assignments. The evaluation criteria and the learning outcomes will be the same as those included in the continuous evaluation.

Percentage

5 %

Name

Theoretical questions

Description and criteria

Short developmental exercise type questions through theoretical questions through a multiple-choice class questionnaire. The evaluation criteria and the learning outcomes will be the same as those included in the continuous evaluation.

Percentage

15 %

Name

Individual or group assignments

Description and criteria

Home resolution and sizing delivery of various parts of a DWTP. Evaluation criteria and learning outcomes are in agreement with those proposed in the continuous evaluation part.

Percentage

15 %

Information

Comments

7. Bibliography and resources

7.1. Basic bibliography

Author: Hernández Muñoz, A.
Title: Abastecimiento y distribución de agua
Editorial: Colegio de Ingenieros de Caminos, Canales y Puertos
Publication Date: 2000
ISBN:

Author: Hernández Muñoz, Aurelio
Title: Abastecimiento y distribución de agua
Editorial: Servicio de Publicaciones de la Escuela de Ingenieros de Caminos de Madrid,
Publication Date: 2008
ISBN: 9788438003909

Author: Liria Montañés, José
Title: Proyecto de redes de distribución de agua en poblaciones
Editorial: Colegio de Ingenieros de Caminos, Canales y Puertos
Publication Date: 1995
ISBN: 8438000819

7.2. Supplementary bibliography

CRAI
Campus Virtual
UPCT-TV

(+34) 968 32 54 25

escuela@caminosyminas.upct.es

  • THE SCHOOL
    • Management Team
    • Faculty Board
    • Administrative Office
    • Students Committee
    • Centre Calendar
    • Teaching Staff
    • Departments
    • Normative
  • HUB
  • Bachelor's Studies
    • Degree in Civil Engineering
    • Degree in Civil Engineering (in expiration)
    • Degree in Energy and Mineral Resource Engineering
    • Degree in Energy and Mineral Resource Engineering (in expiration)
  • Master's Studies
    • Master's degree in Civil Engineering
    • Master's degree in Mining Engineering
    • Master's degree in BIM Methodology for the Development of Infrastructure Projects
    • Master's degree in Water and Ground Science & Technology
  • MOBILITY
    • RESEARCH
      • Research Groups
      • Cátedras
    • NEWS
      • PROCEDURES
      • QUALITY
      • EMPLOYMENT
      • CONTACT
        • Location

        • Paseo Alfonso XIII, 52
          30203 - Cartagena

      Concierge's office
      (+34) 968 32 54 34
      Management

      (+34) 968 32 54 25
      direccion@caminosyminas.upct.es

      >Concierge's office
      Management
      Logo ETSIT
      Universidad Politécnica de Cartagena EUt+