Name: MODELLING AND SIMULATION OF HYDRAULIC STRUCTURES
Code: 213101019
Type: Elective
ECTS: 4.5
Length of subject: Per term
Semester and course: 2nd Year - First term
Speciality:
Language: English
Mode of study: On-site class
Lecturer data: CARRILLO SÁNCHEZ, JOSÉ MARÍA
Knowledge area: Ingeniería Hidráulica
Department: Ingeniería Minera y Civil
Telephone: 868071289
Email: jose.carrillo@upct.es
Office hours and location:
lunes - 11:00 / 14:00
EDIFICIO ANEXO A MINAS, planta 1, Despacho Despacho A1.07
Se atenderá en el horario establecido, o también fuera del mismo, previa solicitud por Microsoft Teams. /
You will be attended at the established time slot, or also in another moment, asking for an appointment by Microsoft Teams.
miércoles - 11:30 / 14:30
EDIFICIO ANEXO A MINAS, planta 1, Despacho Despacho A1.07
Se atenderá en el horario establecido, o también fuera del mismo, previa solicitud por Microsoft Teams. /
You will be attended at the established time slot, or also in another moment, asking for an appointment by Microsoft Teams.
Qualifications/Degrees:
PhD in "Environment and Sustainable Mining" from Universidad Politécnica de Cartagena (SPAIN) - 2014
Master in "Master's Degree in Business Management and Planning" from Universitat Politècnica de València (SPAIN) - 2010
Master in "Master's Degree in Civil Engineering" from Universitat Politècnica de València (SPAIN) - 2009
Graduate in "Bachellor's Degree in Civil Engineering, specialization in Hydrology" from Universidad Politécnica de Cartagena (SPAIN) - 2004
Academic rank in UPCT: Profesor Titular de Universidad
Number of five-year periods: 2
Number of six-year periods: 2 de investigación
Curriculum Vitae: Full Profile
Lecturer data:
CE10. Capacidad para resolver en laboratorio y con programas de ordenador, diferentes problemas avanzados de ingeniería hidráulica. En particular, capacidad para formular, programar y aplicar modelos reducidos, analíticos y numéricos en diferentes estructuras hidráulicas: aliviaderos, rápidas y dispositivos de disipación de energía, procesos de erosión en diversas estructuras de control y corrección de ríos.
Al termino de esta enseñanza el alumnado debe ser capaz de:
DRA1 Diseñar modelos hidráulicos reducidos para analizar problemas complejos.
DRA2 Realizar simulaciones numéricas de estructuras hidráulicas con diferentes soluciones válidas.
DRA3 Planificar actividades de I+D+i.
DRA4 Estructurar un trabajo o proyecto de investigación.
DRA5 Organizar equipos interdisciplinares, detectando y resolviendo puntos de mejora, para alcanzar los objetivos marcados.
Teoría de modelos físicos reducidos: ecuación universal de la hidráulica. Análisis dimensional e inspeccional. Definición de escalas. Modelación numérica: diferencias finitas, elementos finitos, volúmenes finitos, Smoothedparticle hydrodynamics (SPH). Aplicaciones con programas de Hidráulica y de Dinámica de fluidos computacional (CFD).
Unit I. Physical models in Hydraulic Engineering
T1. Vaschy-Buckingham theorem.
T2. Dimensional analysis and physical similarity.
T3. Typical dimensionless numbers.
T4. Universal equations of hydraulics.
T5 Inspectional Analysis.
T6 Fixed and mobile bed models.
T7. Distorted models.
Unit II. Numerical modeling
T8. Numerical resolution and critical analysis in different hydraulic structures through specialized software:
T8.1 - Two-dimensional flow problems. Applications to solve flooding cases of Iber and/or HEC-RAS.
T8.2 - Three-dimensional flow problems with Eulerian programs. Application of FLOW-3D or similar.
T8.3 - Three-dimensional flow problems with Lagrangian programs. Application of DualSPHysics or similar.
P1 - Analysis of an experimental article.
Presentation per groups or individually of the main ideas in a experimental paper related with experimal modelling in Hydraulic Engineering.
P2 - Dimensional analysis
Complete report per group of one hydraulic structure tested at laboratory scale. The report should include: - Basic concepts - Theorectical bases - Three-dimensional file to print in a 3D-printer (.stl file). - Design of the experimental campaign - Comparison of experimental measurements and theoretical data - Conclusions - Design recommendations - Bibliography
P3 - 2D flooding study
Perform a flooding study exercise with a 2-dimensional model (Iber or HEC-RAS). The detailed individual report should contain: - Basic concepts of the model and the choice of each parameters. - Basic data: Digital Terrain Model (DTM); flow scenarios; etc. - Sensinbility analysis: mesh size, roughness, approaches, etc. - Hydraulic study for several return period years. - Conclusions.
P4 - Hydraulic structure model with FLOW-3D.
Perform a 3D simulation of a hydraulic structure with FLOW-3D or similar. The detailed individual report should contain: - Basic concepts of the model and the choice of each numerical parameter. - Comparison of the behaviour/rating curve (numerical versus experimental). - Water surface elevations in the model. - Conclusions. NOTE: The numerical model comparison should include at least three flows, with two different mesh sizes (indicate the number of active cells, and the mesh sizes considered), and two different two-equation turbulence models.
Promoting the continuous improvement of working and study conditions of the entire university community is one the basic principles and goals of the Universidad Politécnica de Cartagena. Such commitment to prevention and the responsibilities arising from it concern all realms of the university: governing bodies, management team, teaching and research staff, administrative and service staff and students. The UPCT Service of Occupational Hazards (Servicio de Prevención de Riesgos Laborales de la UPCT) has published a "Risk Prevention Manual for new students" (Manual de acogida al estudiante en materia de prevención de riesgos), which may be downloaded from the e-learning platform ("Aula Virtual"), with instructions and recommendations on how to act properly, from the point of view of prevention (safety, ergonomics, etc.), when developing any type of activity at the University. You will also find recommendations on how to proceed in an emergency or if an incident occurs. Particularly when carrying out training practices in laboratories, workshops or field work, you must follow all your teacher's instructions, because he/she is the person responsible for your safety and health during practice performance. Feel free to ask any questions you may have and do not put your safety or that of your classmates at risk.
Relación con otras asignaturas del plan de estudios: La asignatura forma parte del itinerario optativo de ¿Hidráulica, Medio Ambiente y Energía¿ y se apoya en los conocimientos adquiridos en asignaturas anteriores, especialmente en la asignatura de Análisis de Flujo en Lámina Libre. Conocimientos previos recomendados: Se recomienda revisar el material de Obras Hidráulicas y Aprovechamientos Hidráulicos (Grado en Ing. Civil) y de Análisis Flujo en Lámina Libre. Cada estudiante tiene que elegir y cursar un itinerario optativo de 16.5 ECTS, agrupados en 3 bloques de 4 asignaturas por temáticas: Bloque de Construcción (16.5 ECTS). Puentes (4.5 ECTS), Tipología estructural y constructiva (4.5 ECTS), Procedimientos especiales de cimentación (4.5 ECTS), Aplicaciones del método de elementos finitos en ingeniería estructural (3 ECTS). Bloque de Transportes, Urbanismo y Ordenación del Territorio (16.5 ECTS). Infraestructuras y servicios urbanos (4.5 ECTS), Intersección y enlaces en redes viarias (4.5 ECTS), Planificación y gestión territorial (3 ECTS), Ingeniería paisajística, territorial y de la planificación ambiental (4.5 ECTS). Bloque de Hidráulica, Medio Ambiente y Energía (16.5 ECTS). Energía hidroeléctrica, eólica y mareomotriz (4.5 ECTS), Modelos numéricos de zonas inundables (3 ECTS), Modelización y simulación de estructuras hidráulicas (4.5 ECTS), Ingeniería fluvial (4.5 ECTS).
Class in conventional classroom: theory, problems, case studies, seminars, etc.
Theory sessions. Resolution of doubts raised by students.
Problems and case studies partially defined or with multiple valid solutions, focused on multidisciplinary nature and/or considering new technologies will be solved and analysed.
The approach and resolution methods will be emphasized. Students will have time to try to solve them, with the
possibility of active participation through volunteer students. Similar problems and/or case studies will be proposed as tasks to improve their skills.
24
100
Class in laboratory: practical classes / internships
The practical laboratory sessions bring the professional working environment closer to the students and allow them to link theoretical and practical contents. Through the laboratory sessions students handle professional cases with traditional (experimental) tools.
6
100
Class in the field or open classroom (technical visits, lectures, etc.)
Considering the possibilities of each course, some facilities will be visited related to the contents of the subject.
3
100
Class in a computer classroom: practical classes / internships
The IT sessions bring the professional working environment closer to the students and allow them to link theoretical and practical
contents. Through the computer classroom sessions, it is intended that students handle professional calculation with simulation programs and tools.
12
100
Tutorials
Resolution of doubts about theory
and exercises.
4
50
Student work: study or individual or group work
Problems and case studies will be solved and analysed. The approach and resolution methods will be emphasized. Students will have time to try to solve them, with the possibility of active participation through volunteer students. Similar problems and/or case studies will be proposed as tasks to improve their skills.
86
0
Individual assignments and/or presentations.
Individual resolution of the work assignments.
Reports, presentation and/or defence of them.
Evaluation of theoretical knowledge, adaptation to new situations and exercises similar to those solved and proposed in class.
Evaluate specific goals 1 to 5.
The tasks include the submission of the practice tasks:
- T1 - Analysis of an experimental article.
Presentation per groups (or individually if the number of students is smaller than 3) of the main ideas of an experimental paper related with experimal modelling in Hydraulic Engineering.
T3 - 2D flooding study.
Perform a flooding study exercise with a 2-dimensional model (Iber or HEC-RAS).
The detailed individual report should contain:
- Basic concepts of the model and the choice of each parameters.
- Basic data: Digital Terrain Model (DTM); flow scenarios; etc.
- Sensinbility analysis: mesh size, roughness, approaches, etc.
- Hydraulic study for several return period years.
- Conclusions.
T4 - Hydraulic structure model with FLOW-3D.
Perform a 3D simulation of a hydraulic structure with FLOW-3D or similar.
The detailed individual report should contain:
- Basic concepts of the model and the choice of each numerical parameter.
- Comparison of the behaviour/rating curve (numerical versus experimental).
- Water surface elevations in the model.
- Conclusions.
NOTE: The numerical model comparison should include at least three flows, with two different mesh sizes (indicate the number of active cells, and the mesh sizes considered), and two different two-equation turbulence models.
Ponderation:
T1 = 10% of the total.
T3 = 35% of the total.
T4 = 35% of the total.
80 %
Team assignments and/or presentations
Teamwork resolution of the work assignments (specific goals 1 to 5).
Presentation and/or defence of them.
Evaluation of theoretical knowledge, adaptation to new situations and exercises similar to those solved and proposed.
The tasks include the submission of the practice task:
- T2 - Dimensional analysis.
Complete report per groups (or individually if the number of students is smaller than 3) of a hydraulic structure tested at laboratory scale.
The report should include:
- Basic concepts.
- Theorectical bases.
- Three-dimensional file to print in a 3D-printer (.stl file).
- Design of the experimental campaign.
- Comparison of experimental measurements and theoretical data.
- Conclusions.
- Design recommendations.
- Bibliography.
20 %
Individual assignments and/or presentations.
Individual resolution of the work assignments.
Reports, presentation and/or defence of them.
Evaluation of theoretical knowledge, adaptation to new situations and exercises similar to those solved and proposed in class.
Evaluate specific goals 1 to 5.
The tasks include the submission of the practice tasks:
- T1 - Analysis of an experimental article.
Presentation per groups (or individually if the number of students is smaller than 3) of the main ideas of an experimental paper related with experimal modelling in Hydraulic Engineering.
T3 - 2D flooding study.
Perform a flooding study exercise with a 2-dimensional model (Iber or HEC-RAS).
The detailed individual report should contain:
- Basic concepts of the model and the choice of each parameters.
- Basic data: Digital Terrain Model (DTM); flow scenarios; etc.
- Sensinbility analysis: mesh size, roughness, approaches, etc.
- Hydraulic study for several return period years.
- Conclusions.
T4 - Hydraulic structure model with FLOW-3D.
Perform a 3D simulation of a hydraulic structure with FLOW-3D or similar.
The detailed individual report should contain:
- Basic concepts of the model and the choice of each numerical parameter.
- Comparison of the behaviour/rating curve (numerical versus experimental).
- Water surface elevations in the model.
- Conclusions.
NOTE: The numerical model comparison should include at least three flows, with two different mesh sizes (indicate the number of active cells, and the mesh sizes considered), and two different two-equation turbulence models.
Ponderation:
T1 = 10% of the total.
T3 = 35% of the total.
T4 = 35% of the total.
80 %
Team assignments and/or presentations
Teamwork resolution of the work assignments (specific goals 1 to 5).
Presentation and/or defence of them.
Evaluation of theoretical knowledge, adaptation to new situations and exercises similar to those solved and proposed.
The tasks include the submission of the practice task:
- T2 - Dimensional analysis.
Complete report per groups (or individually if the number of students is smaller than 3) of a hydraulic structure tested at laboratory scale.
The report should include:
- Basic concepts.
- Theorectical bases.
- Three-dimensional file to print in a 3D-printer (.stl file).
- Design of the experimental campaign.
- Comparison of experimental measurements and theoretical data.
- Conclusions.
- Design recommendations.
- Bibliography.
20 %
Author: Novak, Pavel
Title: Models in hydraulic engineering physical principles and design applications
Editorial: Pitman,
Publication Date: 1981
ISBN: 0273084364
Author: Sharp, J. J.
Title: Hydraulic Modelling
Editorial: Butterworths
Publication Date: 1981
ISBN: 0408004827
Author: Ettema, R.
Title: Hydraulic modeling concepts and practice
Editorial: American Society of Civil Engineers
Publication Date: 2000
ISBN: 0784404151
Author:
Title: U.S. Army Corps of Engineers water resources planning
Editorial: National Academies Press,
Publication Date: 2004
ISBN: 0309532426
Author: Anderson, John D.
Title: Computational fluid dynamics the basics with applications
Editorial: McGraw-Hill
Publication Date: 1995
ISBN: 0070016852
Author:
Title: Modelo Iber 2.0 manual del usuario
Editorial: Ministerio de Fomento, Centro de Publicaciones ; CEDEX, Centro de Publicaciones
Publication Date: 2016
ISBN: 9788477905684
Author: , , y otros
Title: Ingeniería fluidomecánica
Editorial: Universidad Carlos III
Publication Date: 2012
ISBN: 9788497329040
Author: Batchelor, G.K.
Title: An introduction to fluid dynamics
Editorial: Cambridge University
Publication Date: 2002
ISBN: 9780511800955
Author: Abbott and Basco
Title: Computational Fluid Dynamics: An Introduction for Engineers
Editorial: Longman
Publication Date: 1990
ISBN: 0582013658
Author: Hinze, J. O.
Title: Turbulence
Editorial: Ed. McGra-Hill
Publication Date:
ISBN:
Author: varios
Title: Modelización bidimensional del flujo en lamina libre en aguas poco profundas.
Editorial: CEDEX
Publication Date: 2012
ISBN:
Author: US Army Corps of Engineers
Title: HEC-RAS 6.2. Hydraulic Reference Manual
Editorial: Institute for Water Resources Hydrologic Engineer Center
Publication Date: 2022
ISBN:
Author: US Army Corps of Engineers
Title: HEC-RAS 6.2. Applications Guide
Editorial: Institute for Water Resources Hydrologic Engineer Center
Publication Date: 2022
ISBN:
Author: Vreugdenhil, C.B.
Title: Numerical methods for shallow-water flow
Editorial: Kluwer Academic Publishers
Publication Date: 1994
ISBN:
Author: White, Frank M.
Title: Fluid mechanics
Editorial: McGraw-Hill
Publication Date: 1986
ISBN:
- Grupo de I+D+i en Ingeniería Hidráulica, Marítima y Medio Ambiental Hidr@m: www.upct.es/hidrom
- Red de Laboratorios de Hidráulica de España RLHE: www.rlhe.es/
- International Association for Hydro-Environment Engineering and Research (IAHR): http://www.iahr.net/site/index.html
- US Army Corp of Engineers, HEC-RAS: http://www.hec.usace.army.mil/software/hec-ras/
- Iber: http://iberaula.es/web/index.php
- OpenFOAM: http://www.openfoam.org/
- DualSPHysics: https://github.com/DualSPHysics/DualSPHysics/wiki
- http://www.cfd-online.com